
9.1 Introduction
The premier text editor for Linux and UNIX is a program called vi. While there are numerous

editors available for Linux that range from the tiny editor nano to massive emacs editor, there are

several advantages to the vi editor:

 The vi editor is available on every Linux distribution in the world. This is not true of any
other editor.

 The vi editor can be executed both in a CLI interface and a GUI interface. While

graphical editors, like gedit from the Gnome desktop environment or kedit from K
desktop environment, are easier to use, they require a GUI, which servers won't always
have running.

 While new features have been added to the vi editor, the core functions have been

around for decades. This means if someone learned the vieditor in the 1970s, they could
use a modern version without any problem. While that seems trivial, it may not seem to
so trivial twenty years from now.

Consider This

The correct way to pronounce "the vi editor" is "the vee-eye editor". The letters vi stand for
"visual", but it was never pronounced "vi" by the developers, but rather the letter "v" followed by
the letter "i".

The original vi editor was written by Bill Joy, the co-founder of Sun Microsystems. Since vi is
part of the Single UNIX Specification (SUS), it is required that conforming UNIX-based systems
have it. Since the Linux Standards Base (LSB) mirrors the requirements of SUS, Linux systems

that conform to LSB must also include the vi editor.

In reality, most Linux systems don't include the original vi, but an improved version of it known

as vim, for vi improved. This fact may be hidden by most Linux distributions. On some the vi file

will link to vim, while on others an alias exists that will execute vim when the vi command is run:

[sysadmin@localhost ~]$ which vi

alias vi='vim'

 /usr/bin/vim

For the most part, vim works just like vi, but has additional features. For the topics that will be

covered in this course, either vi or vim will work.

To get started using vi, simply type the command followed by the pathname to the file to edit or
create:

sysadmin@localhost:~$ vi newfile

9.2 Command Mode Movement
There are three modes used in vi: command mode, insert mode, and ex mode. Initially, the

program starts in command mode. Command mode is used to type commands, such as those

used to move around a document, manipulate text, and access the other two modes. To return

to command mode at any time, press the ESC key.

Once some text has been added into a document, to perform actions like moving the cursor,

the ESC key needs to be pressed first to return to command mode. This seems like a lot of

work, but remember that vi works in a terminal environment where a mouse is useless.

Movement commands in vi have two aspects, a motion and an optional number prefix, which

indicates how many times to repeat that motion. The general format is as follows:

[count] motion

The following table summarizes the motion keys available:

Motion Result

h Left one character

j Down one line

k Up one line

l Right one character

w One word forward

b One word back

^ Beginning of line

$ End of the line

Note: Since the upgrade to vim it is also possible to use the arrow keys ←↓↑→ instead

of hjkl respectively.

These motions can be prefixed with a number to indicate how many times to perform the

movement. For example, 5h would move the cursor five characters to the left,3w would move

the cursor three words to the right.

To move the cursor to a specific line number, type that line number followed by

the G character. For example, to get to the fifth line of the file type 5G. 1G or gg can be used to

go to the first line of the file, while a lone G will take you to the last line. To find out which

line the cursor is currently on, use CTRL-G.

9.3 Command Mode Actions
The standard convention for editing content with word processors is to use copy, cut, and

paste. The vi program has none of these, instead vi uses the following three commands:

Standard Vi Meaning

cut d delete

copy y yank

Standard Vi Meaning

paste P | p put

The motions learned from the previous page are used to specify where the action is to take

place, always beginning with the present cursor location. Either of the following general

formats for action commands is acceptable:

action [count] motion

[count] action motion

Delete

Delete removes the indicated text from the page and saves it into the buffer, the buffer being

the equivalent of the "clipboard" used in Windows or Mac OSX. The following table

provides some common usage examples:

Action Result

dd Delete current line

3dd Delete the next three lines

dw Delete the current word

d3w Delete the next three words

d4h Delete four characters to the left

Change

Change is very similar to delete, the text is removed and saved into the buffer, however the

program is switched to insert mode to allow immediate changes to the text. The following

table provides some common usage examples:

Action Result

cc Change current line

cw Change current word

Action Result

c3w Change the next three words

c5h Change five characters to the left

Yank

Yank places content into the buffer without deleting it. The following table provides some

common usage examples:

Action Result

yy Yank current line

3yy Yank the next three lines

yw Yank the current word

y$ Yank to the end of the line

Put

Put places the text saved in the buffer either before or after the cursor position. Notice that

these are the only two options, put does not use the motions like the previous action

commands.

Action Result

p Put (paste) after cursor

P Put before cursor

Searching in vi

Another standard function that word processors offer is find. Often, people use CTRL+F or

look under the edit menu. The vi program uses search. Search is more powerful than find

because it supports both literal text patterns and regular expressions.

To search forward from the current position of the cursor, use the / to start the search, type a

search term, and then press the Enter key to begin the search. The cursor will move to the

first match that is found.

To proceed to the next match using the same pattern, press the n key. To go back to a

previous match, press the N key. If the end or the beginning of the document is reached, it will

automatically wrap around to the other side of the document.

To start searching backwards from the cursor position, start by typing ?, then type the pattern

to search for matches and press the Enter key.

9.4 Insert Mode
Insert mode is used to add text to the document. There a few ways to enter insert mode from

command mode, each differing by where the text insertion will begin. The following table

covers the most common:

Input Purpose

a Enter insert mode right after the cursor

A Enter insert mode at the end of the line

i Enter insert mode right before the cursor

I Enter insert mode at the beginning of the line

o Enter insert mode on a blank line after the cursor

O Enter insert mode on a blank line before the cursor

9.5 Ex Mode
Originally, the vi editor was called the ex editor. The name vi was the abbreviation of

the visual command in the ex editor that switched the editor to "visual" mode.

In the original normal mode, the ex editor only allowed users to see and modify one line at a

time. In the visual mode, users could see as much of the document that will fit on the screen.

Since most users preferred the visual mode to the line editing mode, the ex program file was

linked to a vi file, so that users could start ex directly in visual mode when they ran

the vi link.

Eventually, the actual program file was renamed vi and the ex editor became a link that

pointed the vi editor.

When the ex mode of the vi editor is being used, it is possible to view or change settings, as

well as carry out file-related commands like opening, saving or aborting changes to a file. In

order to get to the ex mode, type a : character in command mode. The following table lists

some common actions performed in ex mode:

Input Purpose

Input Purpose

:w Write the current file to the filesystem

:w filename Save a copy of the current file as filename

:w! Force writing to the current file

:1 Go to line number 1 or whatever number is given

:e filename Open filename

:q Quit if no changes made to file

:q! Quit without saving changes to file

A quick analysis of the table above reveals if an exclamation mark ! is added to a command,

then attempts to force the operation. For example, imagine you make changes to a file in

the vi editor and then try to quit with :q, only to discover that the "quit" command fails.

The vi editor doesn't want to quit without saving the changes you made to a file, but you can

force it to quit with the ex command :q!.

Consider This

While it may seem impossible, the vi editor can save changes to a read-only file. The

command :w! will try to write to a file, even if it is read-only, by attempting to change the

permissions on the file, perform the write to the file and then change the permissions back to

what they were originally.

This means that the root user can make changes to almost any file in the vi editor, regardless

of the permissions on the file. However, ordinary users will only be able to force writing to

the files that they own. Using vi doesn't change the fact that regular users can't modify the

permissions on file that they do not own.

Although the ex mode offers several ways to save and quit, there's also ZZ that is available in

command mode; this is the equivalent of :wq. There are many more overlapping functions

between ex mode and command mode. For example, ex mode can be used to navigate to any

line in the document by typing :followed by the line number, while the G can be used in

command mode as previously demonstrated.

Chapter 9: The vi Editor
This chapter will cover the following exam objectives:

103.8: Perform basic file editing operations using vi

Weight: 3

Description: Candidates should be able to edit text files using vi. This objective includes vi

navigation, basic vi modes, inserting, editing, deleting, copying and finding text.

Key Knowledge Areas:

 Navigate a document using vi
Section 9.2

 Use basic vi modes
Section 9.2

 Insert, edit, delete, copy and find text
Section 9.4

Chapter 9: The vi Editor

/, ?

This is used to search for text while in command mode. the / is used to start searching. Enter

a key term and press enter to begin searching the file for the text entered. If the user would

like to search backwards in the document, a ? can be used instead of the /.
Section 9.3

ZZ, :w!, :q!, :e!

These keys are used to exit the vi editor from command mode. ZZ is used to save and quit

the file. It must be done for each file. :e! is used to restor the original file allow the user to

start over. :w! will force the writing of the current file. :q! will exit the editor without saving

changes to the current file.
Section 9.5

c, d, p, y, dd, yy

These are used to cut, copy, replace and paste text when in command mode. c is used to

change a line from the the current cursor location to the end of the line with whatever the

user types. d is used to cut one alphabetic word, where as dd is used to cut an entire line of

text. y is used to copy one one alphabetic word, where as yy is used to copy and entire line

at a time. If a number preceeds either dd or yy, this will copy that number of lines. For

example if 3dd is typed this will cut 3 lines at a time.
Section 9.3

h, j, k, l

These keys are used for basic cursor movement in vi when in command mode. h moves left

one character, j moves down one line, k moves up one line, and l moves right one character.
Section 9.2

i, o, a

i, o, and a are used to enter insert mode from command mode. i will allow a user to start

inserting text at the current location of the cursor. o will allow a user to start inserting text a

line below the current location of the cursor, and a will allow a user to insert text one

postion after the current location of the cursor.
Section 9.4

vi

A screen-oriented text editor originally created for Unix operating systems. vi is also known

as a modal editor in which the user must switch modes to create, edit, and search text in a

file.

Section 9.1 | Section 9.2 | Section 9.3 | Section 9.5

https://content.netdevgroup.com/contents/lpic1-s1/9/9.2
https://content.netdevgroup.com/contents/lpic1-s1/9/9.2
https://content.netdevgroup.com/contents/lpic1-s1/9/9.4
https://content.netdevgroup.com/contents/lpic1-s1/9/#c1
https://content.netdevgroup.com/contents/lpic1-s1/9/9.3
https://content.netdevgroup.com/contents/lpic1-s1/9/9.5
https://content.netdevgroup.com/contents/lpic1-s1/9/9.3
https://content.netdevgroup.com/contents/lpic1-s1/9/9.2
https://content.netdevgroup.com/contents/lpic1-s1/9/9.4
https://content.netdevgroup.com/contents/lpic1-s1/9/9.1
https://content.netdevgroup.com/contents/lpic1-s1/9/9.2
https://content.netdevgroup.com/contents/lpic1-s1/9/9.3
https://content.netdevgroup.com/contents/lpic1-s1/9/9.5

